REACH BASED RESTORATION :

SUCCESSES AND LESSONS LEARNED FROM DECADES OF ECOLOGICAL RESTORATION

John DiRocco, Senior Project Manager Restoration Projects Group Toronto and Region Conservation Authority

August 28, 2018

Presentation Outline

- Prioritizing Urban Stream Restoration Projects
- Past and Current Design Techniques
- Identifying Suitable Sites for Natural Channel Restoration
- Feature Project Example: Alfred Khuene Natural Channel Project
- Other Project Examples
- Results

The information contained in this presentation is copyright © Toronto and Region Conservation Authority

Prioritizing Urban Stream Restoration Projects

Problem:

Multiple channelized/hardened urban stream systems requiring maintenance throughout TRCA jurisdiction

Solution:

Identify and prioritize impaired systems can be restored using natural channel design/principles

Restoration Challenges in an Urban System (end of the pipe)

- Hardened stream features, degrade over time (limited lifespan)
- Not connected to floodplains/incised creek channel
- Uncontrolled storm water inputs
- Lack of vegetation and impervious surfaces
- Flood prone areas and lack of flood storage
- Poor habitat quality
- Poor water quality

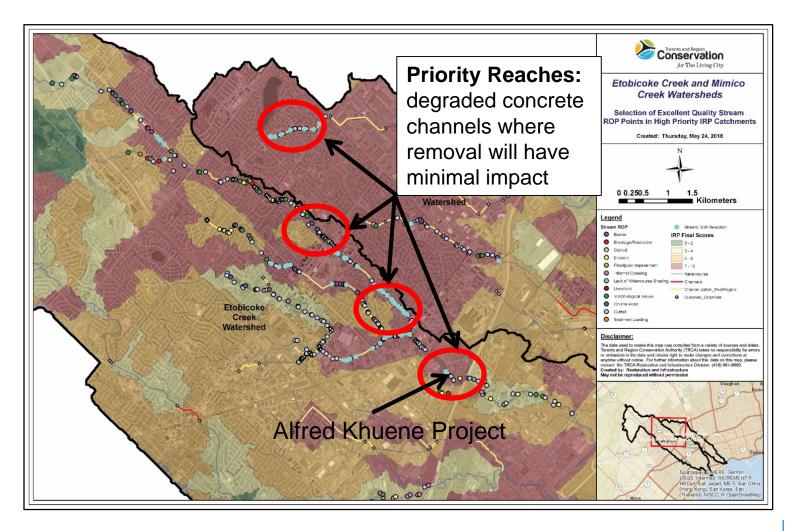
Past Design Techniques

- Past focused on fixing end-of-pipe (e.g. erosion) rather than system fixes or reach base restoration
- Spot fixes rather than reach based solutions
- No consideration of upstream and downstream issues (i.e. transferring the root problem)
- Lack of incorporating critical habitat components into designs
- Heavy focus on armouring in areas where a softer approach would be more beneficial

Current Design Techniques

- Dealing with all aspects of the impairment/features not just the impact
- System based approach
- Reconnecting to floodplain
- Reconstructing low flow channel to convey proper flows
- Wetlands and other associated habitat in the floodplain
- Natural cover and soil stability
- Wetlands at storm outlets for water quality
- Floodplain roughness and direction within entire width of floodplain using woody debris, rocks, plantings
- Structural habitat: in-stream and in the floodplain (riffle:pool, bank habitat/protection
- Incorporating storm water treatment and green infrastructure

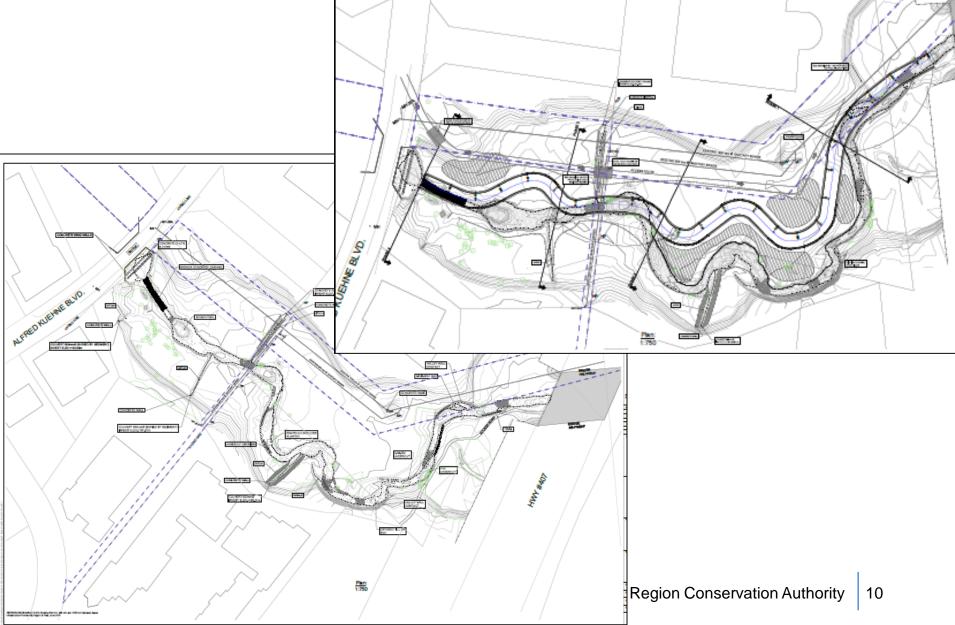
Identifying Suitable Sites for Natural Channel Restoration


Site Selection based on:

- IRP and ROP Information
- Flood constraints/opportunities
- Adjacent property and infrastructure constraints/opportunities
- Access constraints/opportunities

Prioritization based on:

- Condition of existing channel (e.g., failed vs. failing concrete)
- Potential for largest habitat gains over current conditions (i.e., going from concrete lined to natural channel with floodplain connectivity and habitat features)
- Proximity to existing habitat to facilitate integrated habitat function (i.e., Connectivity, invertebrates, fish and wildlife)


Prioritizing and Site Selection: Spring Creek Reach Mapping

Feature Project: Spring Creek (Alfred Kuehne) Phase 1

Feature Project: Spring Creek (Alfred Kuehne) Phase 2

Feature Project: Spring Creek (Alfred Kuehne)

Phase

Northern reach: Previously straightened concrete channel, restored to natural channel

Floodplain cut to increase flood storage and reconnect to channel

AFTER

Floodplain wetland

Phase 2

Southern reach: Erosion threatening infrastructure (sewer main) an poor overall stream health

Storm outfall treatment wetland

Feature Project: Spring Creek (Alfred Kuehne)

Use of Woody Material

- Replaces structure loss from clearcutting
- Provides habitat for wildlife
- Can be used for bank protection
- Provides important fish habitat
- Increases surface roughness

Use of Stone Material

- Critical bank projection
- Fish habitat (riffle:pool)
- Hard features control flows (vortex weirs)
- Other floodplain habitat

Use of Vegetation (Bio-engineering)

- Soil stabilization
- Bank Protection
- Overhanging vegetation for food and cover
- Alternative to hardened surfaces

Wetlands and Floodplain Storage

- Increased flood capacity
- Reconnects channel to floodplain
- Provides habitat for wildlife using valley corridor
- Water quality treatment when intercepting uncontrolled storm flow

Other things to consider During Construction (Weather)

Other things to consider During Construction (Weather)

Other things to consider During Construction (Weather)

Other Project Examples

Humber Estuary Hooks (Coastal)

Before

Hardened Bank with no habitat structure

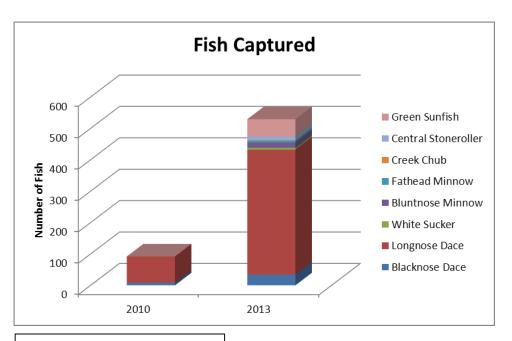
After

In water habitat added with bank protection

Heart Lake Shoreline

Before

Degraded Shoreline with failed gabion baskets



Restored Shoreline with habitat features, trail, and fishing node

Restoration Success

	2010	2013
Blacknose Dace	8	34
Longnose Dace	84	398
White Sucker	0	e
Bluntnose Minnow	0	17
Fathead Minnow	0	e
Creek Chub	0	1
Central Stoneroller	0	12
Green Sunfish	0	55
TOTA	AL 92	529

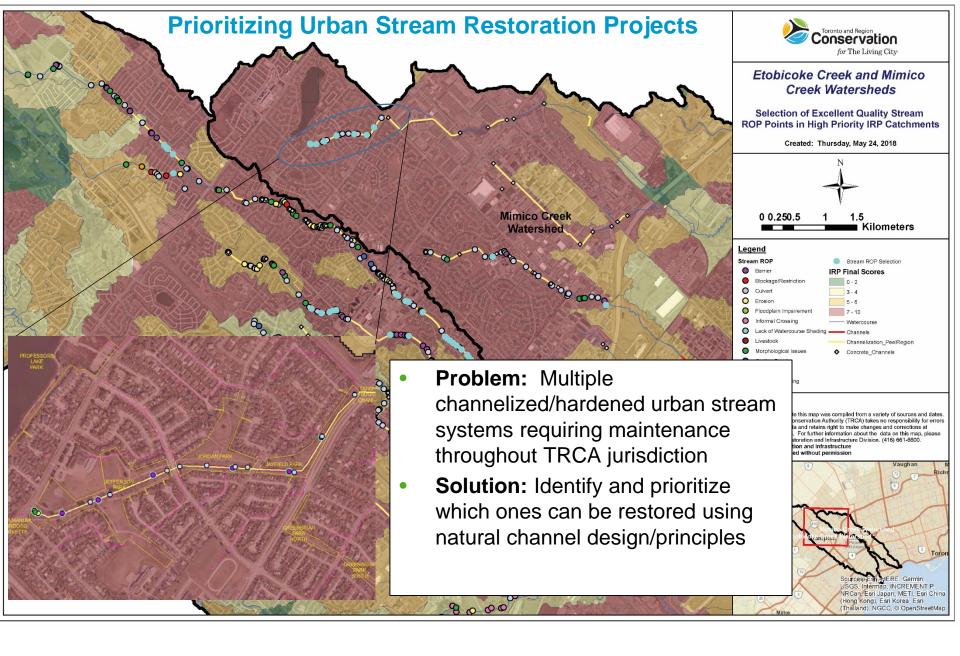
2010 Prerestoration: 92 fish were sampled. Only 2 species

2013 Post restoration: 529 fish were sampled. 8 species

Thank You!

John DiRocco, Senior Project Manager Toronto and Region Conservation Authority jdirocco@trca.on.ca

www.trca.ca



Prioritizing Urban Stream Restoration Projects

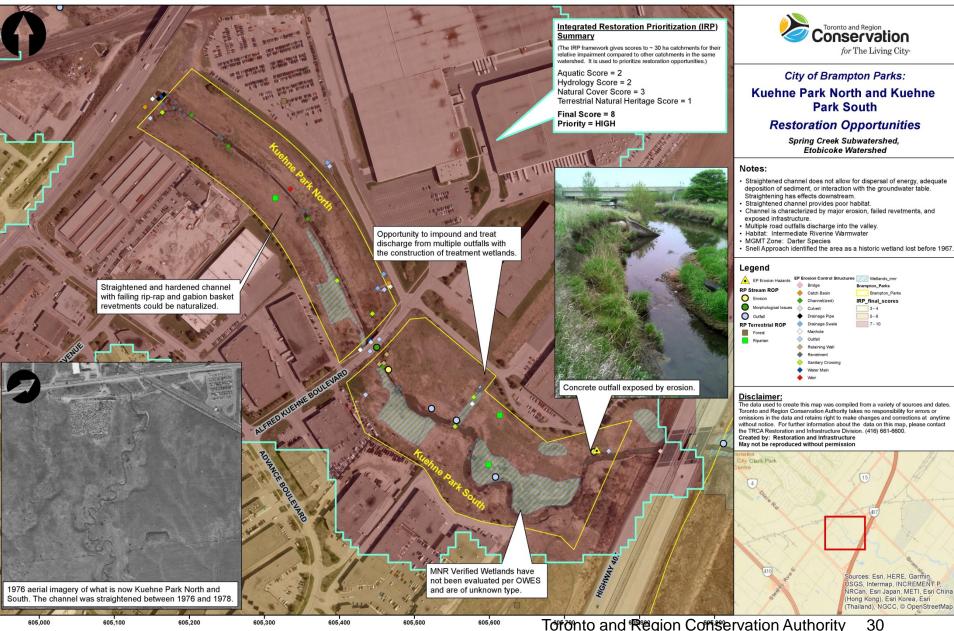
Problem: Multiple channelized/hardened urban stream systems requiring maintenance throughout TRCA jurisdiction

Solution: Identify and prioritize which ones can be restored using natural channel design/principles

Identifying Suitable Sites for Natural Channel Restoration

Site Selection based on:

- IRP and ROP Information
- Flood constraints/opportunities
- Adjacent property and infrastructure constraints/opportunities
- Access constraints/opportunities


Prioritization based on:

- Condition of existing channel (e.g., failed vs. failing concrete)
- Potential for largest habitat gains over current conditions (e.g., going from concrete lined to natural channel with floodplain connectivity and habitat features)
- Proximity to existing habitat to facilitate integrated habitat function (i.e., colonization by vegetation, invertebrates, fish, and wildlife)

Application:

- Utilize naturalized channels to satisfy Fisheries Act requirements
- Develop proponent led habitat banking (creating fish habitat where there was none)

Alfred Kuehne Stream Restoration Project

Spring Creek Remediation Project

- Spring Creek Pilot Project report completed in 2014 by TRCA, and
- Fluvial Geomorphological Characterization report completed in 2015 by Dr. Paul Villard and the University of Guelph
- Identified reaches within Spring Creek Watershed suitable for Restoration
- TRCA is currently in the process of prioritizing these sites for a 10 year Restoration Plan
- TRCA in early stages of establishing candidate sites for Proponent-led Habitat Banking

Project

Khuene

- Show video
- Examples of what was included
- Site pics before and after
 - Bank treatments
 - In-water treatments
 - Flood plain wetlands
 - Stormwater treatment wetlands

Deliverables

Length of stream Area of natural cover Barrier removals Wetland cover

Next Steps

10 year plan "Joel's slides

Restoration Goals and Objectives

Goal:

Protect and restore ecosystem function and health to benefit ecological goods and services.

Objectives

1.Restore **natural hydrologic processes** and aquatic systems by reversing, repairing or mitigating alterations and impairments

2.Restore and/or **increase natural cover** (wetland, riparian, forest, and meadow)

3.Enhance landforms and **restore soil and soil processes** to promote self-sustaining natural communities

4. Maximize size, shape and **connectivity** of natural heritage features

TITLE?

